Rice husks (RH) are a potential biomass source for bio-energy production in China, such as bio-gas production by gasification technology. In this paper, a bench-scale downdraft fixed bed gasifier (DFBG) and a tar sampling system were designed. The effect of equivalence ratio (ER) on gasification performance in terms of the temperature in the gasifier, the composition distribution of the producer gas, and the tar content in the producer gas was studied. The maximum lower heating value of 4.44 MJ/Nm 3 , minimum tar content of 1.34 g/Nm 3 , and maximum cold gas efficiency of 50.85% were obtained at ER of 0.211. In addition, the characteristics of gasification byproducts, namely bio-char and bio-tar, were analyzed. The proximate and ultimate analysis (especially of the alkali metal), the surface morphology, the surface area, and the pore size distribution of the rice husk char (RHC) were obtained by the use of X-ray fluorescence (XRF) and scanning electron microscopy (SEM), as well as by using the Brunauer-Emmett-Teller (BET) method. The components of light tar and heavy tar were obtained by using gas chromatography-mass spectrometry (GC-MS).