This Study focuses on the preparation of sustainable and efficient Chitosan catalyst for the removal of three organic pollutants, 17β-Estradiol (E2), 17α-ethynyl estradiol (EE2) and triclosan (TCS) from water. The prepared nanocomposites were characterized by different techniques which confirmed the presence of the key components Chitosan,
Carica Papaya
seed and Kaolinite. The optical characterization proved the nanocomposite is photoactive with a band gap of 1.81 eV and 1.77 eV for Chitosan/kaolinite biochar (CS/KBC) and Chitosan/kaolinite biochar/GO (CS/KBC/GO) respectively, confirming the ability of the nanocomposite to be active in the visible light region of the spectrum. The degradation experiment using CS/KBC/GO was observed better with 100% removal for 5 mg/L E2 and EE2 over 60 min and 97.8% over 120 min for 10 mg/L TCS at optimum conditions (pH 3 for E2, and EE2 and pH 7). It was observed that the superoxide radical played a major role in the degradation of the contaminants. Furthermore, the CS/KBC/GO was efficient over four cycles without any decrease in performance, which rules out the question of catalyst deactivation proving the sustainability of the catalyst. The toxicity test shows that the water is safe as it does not harm
cerio daphnia silvestrii
organism.; CS/KBC/GO efficiently removed the micropollutants from real-life waste samples and the performance was very good with a slight decrease in performance for the wastewater due to the complex matrix of the water sample that competes for the active site.