Dissipated power in metal oxide nanowires (rNW<45 nm) often causes important self-heating effects and as a result, undesired aging and failure of the devices. Nevertheless, this effect can be used to optimize the sensing conditions for the detection of various gaseous species, avoiding the requirement of external heaters. In this letter, the sensing capabilities of self-heated individual SnO2 nanowires toward NO2 are presented. These proof-of-concept systems exhibited responses nearly identical to those obtained with integrated microheaters, demonstrating the feasibility of taking advantage of self-heating in nanowires to develop ultralow power consumption integrated devices.