The performance of mutual fund or pension fund managers is often evaluated by comparing the returns of managed portfolios with those of a benchmark. As most portfolio managers use dynamic rules for rebalancing their portfolios, we use a dynamic framework to study the optimization of the tracking error-return trade-off. Following these observations, we assume that the manager minimizes the tracking error under an expected return goal (or, equivalently, maximizes the information ratio). Moreover, we assume that he/she complies with a stochastic hedging constraint whereby the terminal value of the portfolio is (almost surely) higher than a given stochastic payoff. This general setting includes the case of a minimum wealth level at the horizon date and the case of a performance constraint on terminal wealth as measured by the benchmark (i.e. terminal portfolio wealth should be at least equal to a given proportion of the index). When the manager cares about absolute returns and relative returns as well, the risk-return trade-off acquires an extra dimension since risk comprises two components. This extra risk dimension substantially modifies the characteristics of portfolio strategies. The optimal solutions involve pricing and duplication of spread options. Optimal terminal wealth profiles are derived in a general setting, and optimal strategies are determined when security prices follow geometric Brownian motions and interest rates remain constant. A numerical example illustrates the type of strategies generated by the model.