The promotion of ecological and renewable materials is gaining more and more interest. Some authors even maintain that the use of plant biomass helps to protect the environment, without giving any supporting values. The aim of this study is firstly to show how much carbon dioxide is saved by not burning sugar cane bagasse (SCB). Secondly, it highlights the structural advantages of using sugarcane bagasse in construction. To do this, we collected the carbon composition of sugarcane bagasse from the literature and evaluated the amount of carbon dioxide emitted during combustion using the carbon-to-carbon dioxide conversion equation. We then formulated an F0 control mortar. Volume fractions of this control mortar are replaced by sugarcane bagasse. For 0%, 3% and 6% rates of sugarcane bagasse, we obtained F0, F3 and F6 respectively.
The results of this study show that the use of sugarcane bagasse in the mortar makes it possible to lighten the loads on the structural elements while improving the flexural strength of the mortar for a rate of 3% of sugarcane bagasse. In addition, the combustion equation shows that, in the best-case scenario, one kilogram of burnt sugarcane bagasse releases 1.77 kg of carbon dioxide. Using mortar reinforced with sugarcane bagasse therefore helps to reduce greenhouse gas emissions. These mortars can also be used as infill elements such as joists.