Abstract:A Berge cycle of length $k$ in a hypergraph $\mathcal H$ is a sequence of distinct vertices and hyperedges $v_1,h_1,v_2,h_2,\dots,v_{k},h_k$ such that $v_{i},v_{i+1}\in h_i$ for all $i\in[k]$, indices taken modulo $k$. F\"uredi, Kostochka and Luo recently gave sharp Dirac-type minimum degree conditions that force non-uniform hypergraphs to have Hamiltonian Berge cycles. We give a sharp Pósa-type lower bound for $r$-uniform and non-uniform hypergraphs that force Hamiltonian Berge cycles.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.