The electromagnetic piezoelectric hybrid-driven 3-degree-of-freedom motor is a new multi-degree-of-freedom motor. To further analyze the torque characteristics of the electromagnetic piezoelectric hybrid-drive 3-degree-of-freedom motor. First, the principle and basic structure of the hybrid-drive motor are introduced, and the displacement and pressure distribution of the stator-rotor contact surface are obtained by analytical method. Based on this, the torque model of the piezoelectric stator-drive motor is obtained. Then, the air-gap magnetic field model of the permanent magnet rotor is obtained by analytical method, and the electromagnetic stator-torque model is obtained. Finally, the torque model of the electromagnetic piezoelectric hybrid-drive 3-degree-of-freedom motor is established by vector synthesis. The effects of piezoelectric stator mounting position angle, stator-rotor contact materials, and preload on motor torque are analyzed by simulation. The advantages of electromagnetic piezoelectric hybrid drive are analyzed, and the rationality of the model is preliminarily verified. It lays the foundation for further optimization design and performance improvement of electromagnetic piezoelectric hybrid-drive 3-degree-of-freedom motor.