The proton electrochemical gradient drives substrate transport across the cell membrane via a diverse set of secondary active transporters. Proton coupled peptide transporters (POTs) are important for peptide transport in prokaryotes and eukaryotic cells, where they mediate the uptake of di- and tri-peptides in addition to drug and pro-drug molecules. Previously, we captured a POT transporter from Staphylococcus hominis, PepTSh, in a cytoplasm-facing, inward open state (Minhas et al., 2018). Biochemical experiments have further revealed several critical residues for proton coupled transport; however, the precise role played by these residues in coupling proton binding to conformational changes as well as the timescales for proton transfers have remained obscure. Here, we employed multiscale modeling, including classical molecular dynamics, reactive molecular dynamics, and enhanced free energy sampling to characterize proton coupling within this transporter. We show directly that proton binding to a glutamate on TM7 opens the extracellular gate. The inward proton flow is found to induce movement of the peptide towards the cytosol by varying the protonation state of a second conserved glutamate on TM10. We also show that proton movement between TM7 and TM10 is thermodynamically driven and kinetically permissible, revealing a mechanism for proton movement inside the transporter.