An algorithm was derived to relate the amino acid sequence of a collagen triple helix to its thermal stability. This calculation is based on the triple helical stabilization propensities of individual residues and their intermolecular and intramolecular interactions, as quantitated by melting temperature values of host-guest peptides. Experimental melting temperature values of a number of triple helical peptides of varying length and sequence were successfully predicted by this algorithm. However, predicted T m values are significantly higher than experimental values when there are strings of oppositely charged residues or concentrations of like charges near the terminus. Application of the algorithm to collagen sequences highlights regions of unusually high or low stability, and these regions often correlate with biologically significant features. The prediction of stability from sequence indicates an understanding of the major forces maintaining this protein motif. The use of highly favorable KGE and KGD sequences is seen to complement the stabilizing effects of imino acids in modulating stability and may become dominant in the collagenous domains of bacterial proteins that lack hydroxyproline. The effect of single amino acid mutations in the X and Y positions can be evaluated with this algorithm. An interactive collagen stability calculator based on this algorithm is available online.The ability to predict structure and stability from amino acid sequence is an important step in the understanding of basic protein principles and the structural consequences of pathological mutations. The vast number of amino acid sequences available from DNA data contrasts with the smaller number of high resolution protein structures and the limited experimental data on protein stability. The ability to make predictions that are in good agreement with experimental data provides insight into the stabilizing interactions within proteins. In addition, there is much interest in computing the effect of single amino acid replacements on protein stability because destabilizing effects are associated with deleterious mutations that result in clinically detectable phenotypes (1-3). In contrast to globular proteins, the relation among sequence, structure, and stability is simpler and better defined for the linear collagen triple helix.The collagen triple helix motif is found widely in structural proteins of the extracellular matrix and in an increasing set of non-collagenous proteins, many of which are involved in host-defense functions (4, 5). The close packing of three supercoiled polyproline II-like polypeptide chains in the collagen triple helix generates a requirement for Gly as every third residue (6 -8). The observation of such a repeating (Gly-X-Y) n sequence pattern over a stretch of residues signifies a triple helix conformation. However, the collagen triple helix is not uniform in structure or stability. Crystal structures of collagen peptides show that variation in amino acid content leads to small but significant variations i...