A system for accurate localization and tracking of remote objects is introduced, which employs a reference frame of four coplanar ultrasound sources as transmitters and miniature microphones that equip the remote objects as receivers. The transmitters are forced to emit pulses in the 17 -40 kHz band. A central processing unit, knowing the positions of the transmitters and the time of flight of the ultrasound signals until they reach the microphones, computes the positions of the microphones, identifying and discarding possible false signals due to echoes and environmental noise. Once the microphones are localized, the position of the object is computed by finding the placement of the geometrical reconstructed object that fits best with the calculated microphones positions. The operating principle of the localization system is based on successive frames. The data are processed in parallel for all the microphones that equip the remote objects, leading to a high repetition rate of localization frames. In the proposed prototype, all the computation, including signal filtering, time of flight detection, localization and results display, is carried out about 25 times per second on a notebook PC.