Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<abstract> <p>This study explores the current technology landscape and intersection of biochar and carbon capture and storage (CCS) within the engineering field, presenting a meticulous analysis gleaned from the Scopus database through bibliometric analysis. In response to the urgent need to address the escalating climate crisis, biochar, with its high carbon content, emerges as a promising and resilient tool for carbon sequestration. A literature review establishes biochar's pivotal role in mitigating climate change with contributions including substantial carbon sequestration potential, economic benefits, and positive impacts on soil structure and crop yields. Distinguishing between the applications of biochar and CCS, this paper emphasizes their complementary roles in decarbonization. By employing VOSviewer, an advanced bibliometric tool, a quantitative exploration of global connections identifying prominent authors, highly cited literature, and research trends is provided. The results reveal a substantial increase in publications related to biochar in CCS, particularly during the rapid development phase from 2016 to 2023, reflecting a growing interest in utilizing biochar as a carbon sink. Key insights from the co-occurrence analysis of keywords shed light on evolving research focuses, with three distinct clusters demonstrating the interconnectedness of adsorption, biochar, and pyrolysis. The precise method highlights a shift in research focus towards more impactful areas, particularly water pollutant removal and adsorption. The conclusion emphasizes biochar's dual role in soil carbon sequestration and carbon capture technologies, showcasing its versatility as a valuable tool in climate change mitigation efforts. Despite challenges in large-scale implementation, biochar, especially in the context of direct air capture and bioenergy CCS, emerges as a cost-effective and environmentally friendly adsorbent. In summary, this bibliometric analysis encapsulates a rigorous exploration of biochar and CCS, contributing valuable insights for researchers, policymakers and practitioners. By navigating uncharted territory, this study guides future endeavors toward impactful and relevant areas of study in the pursuit of sustainable climate change mitigation.</p> </abstract>
<abstract> <p>This study explores the current technology landscape and intersection of biochar and carbon capture and storage (CCS) within the engineering field, presenting a meticulous analysis gleaned from the Scopus database through bibliometric analysis. In response to the urgent need to address the escalating climate crisis, biochar, with its high carbon content, emerges as a promising and resilient tool for carbon sequestration. A literature review establishes biochar's pivotal role in mitigating climate change with contributions including substantial carbon sequestration potential, economic benefits, and positive impacts on soil structure and crop yields. Distinguishing between the applications of biochar and CCS, this paper emphasizes their complementary roles in decarbonization. By employing VOSviewer, an advanced bibliometric tool, a quantitative exploration of global connections identifying prominent authors, highly cited literature, and research trends is provided. The results reveal a substantial increase in publications related to biochar in CCS, particularly during the rapid development phase from 2016 to 2023, reflecting a growing interest in utilizing biochar as a carbon sink. Key insights from the co-occurrence analysis of keywords shed light on evolving research focuses, with three distinct clusters demonstrating the interconnectedness of adsorption, biochar, and pyrolysis. The precise method highlights a shift in research focus towards more impactful areas, particularly water pollutant removal and adsorption. The conclusion emphasizes biochar's dual role in soil carbon sequestration and carbon capture technologies, showcasing its versatility as a valuable tool in climate change mitigation efforts. Despite challenges in large-scale implementation, biochar, especially in the context of direct air capture and bioenergy CCS, emerges as a cost-effective and environmentally friendly adsorbent. In summary, this bibliometric analysis encapsulates a rigorous exploration of biochar and CCS, contributing valuable insights for researchers, policymakers and practitioners. By navigating uncharted territory, this study guides future endeavors toward impactful and relevant areas of study in the pursuit of sustainable climate change mitigation.</p> </abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.