An Automata Network is a map f : Q n → Q n where Q is a finite alphabet. It can be viewed as a network of n entities, each holding a state from Q, and evolving according to a deterministic synchronous update rule in such a way that each entity only depends on its neighbors in the network's graph, called interaction graph. A major trend in automata network theory is to understand how the interaction graph affects dynamical properties of f . In this work we introduce the following property called expansivity: the observation of the sequence of states at any given node is sufficient to determine the initial configuration of the whole network. Our main result is a characterization of interaction graphs that allow expansivity. Moreover, we show that this property is generic among linear automata networks over such graphs with large enough alphabet. We show however that the situation is more complex when the alphabet is fixed independently of the size of the interaction graph: no alphabet is sufficient to obtain expansivity on all admissible graphs, and only non-linear solutions exist in some cases. Finally, among other results, we consider a stronger version of expansivity where we ask to determine the initial configuration from any large enough observation of the system. We show that it can be achieved for any number of nodes and naturally gives rise to maximum distance separable codes. 1