The advances of mass spectrometry in the analysis of nucleic acids have tracked very closely the exciting developments of instrumentation and ancillary technologies, which have taken place over the years. However, their diffusion in the broader life sciences community has been and will be linked to the ever evolving focus of biomedical research and its changing demands. Before the completion of the Human Genome Project, great emphasis was placed on sequencing technologies that could help accomplish this project of exceptional scale. After the publication of the human genome, the emphasis switched toward techniques dedicated to the exploration of sequences not coding for actual protein products, which amount to the vast majority of transcribed elements. The broad range of capabilities offered by mass spectrometry is rapidly advancing this platform to the forefront of the technologies employed for the structure-function investigation of these noncoding elements. Increasing focus on the characterization of functional assemblies and their specific interactions has prompted a re-evaluation of what has been traditionally construed as nucleic acid analysis by mass spectrometry. Inspired by the accelerating expansion of the broader field of nucleic acid research, new applications to fundamental biological studies and drug discovery will help redefine the evolving role of MS-analysis of nucleic acids in the post-genomics age. (J Am Soc Mass Spectrom 2010, 21, 1-13)