2009
DOI: 10.1016/j.mcm.2008.07.008
|View full text |Cite
|
Sign up to set email alerts
|

Positive pseudo almost periodic solutions for some nonlinear infinite delay integral equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2013
2013
2022
2022

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 11 publications
0
3
0
Order By: Relevance
“…Ding et al 8 studied the problem of existence of positive almost automorphic solutions for the neutral nonlinear delay integral equation xfalse(tfalse)=γxfalse(tσfalse)+false(1γfalse)tσtffalse(s,xfalse(sfalse)false)ds0.5emfor0.5emt,$$ x(t)&#x0003D;\gamma x\left(t-\sigma \right)&#x0002B;\left(1-\gamma \right){\int}_{t-\sigma}&#x0005E;tf\left(s,x(s)\right) ds\kern0.5em \mathrm{for}\kern0.5em t\in \mathbb{R}, $$ where 0δ<1,0.1emffalse(t,xfalse)=trueni=1fifalse(t,xfalse)gifalse(t,xfalse),0.1emfifalse(t$$ 0\le \delta &lt;1,f\left(t,x\right)&#x0003D;\sum \limits_n&#x0005E;{i&#x0003D;1}{f}_i\left(t,x\right){g}_i\left(t,x\right),{f}_i\Big(t $$false)$$ \Big) $$ is nondecreasing in +$$ {\mathbb{R}}&#x0005E;{&#x0002B;} $$ and gifalse(t$$ {g}_i\Big(t $$false)$$ \Big) $$ is nonincreasing in +$$ {\mathbb{R}}&#x0005E;{&#x0002B;} $$. Equation () is also studied in the almost periodic case by Ait Dads and Ezzinbi, 5 and by Ait Dads et al, 32 where ffalse(t$$ f\Big(t $$false)$$ \Big) $$ is nondecreasing in …”
Section: Application To Nonlinear Delay Integral Equationsmentioning
confidence: 99%
See 2 more Smart Citations
“…Ding et al 8 studied the problem of existence of positive almost automorphic solutions for the neutral nonlinear delay integral equation xfalse(tfalse)=γxfalse(tσfalse)+false(1γfalse)tσtffalse(s,xfalse(sfalse)false)ds0.5emfor0.5emt,$$ x(t)&#x0003D;\gamma x\left(t-\sigma \right)&#x0002B;\left(1-\gamma \right){\int}_{t-\sigma}&#x0005E;tf\left(s,x(s)\right) ds\kern0.5em \mathrm{for}\kern0.5em t\in \mathbb{R}, $$ where 0δ<1,0.1emffalse(t,xfalse)=trueni=1fifalse(t,xfalse)gifalse(t,xfalse),0.1emfifalse(t$$ 0\le \delta &lt;1,f\left(t,x\right)&#x0003D;\sum \limits_n&#x0005E;{i&#x0003D;1}{f}_i\left(t,x\right){g}_i\left(t,x\right),{f}_i\Big(t $$false)$$ \Big) $$ is nondecreasing in +$$ {\mathbb{R}}&#x0005E;{&#x0002B;} $$ and gifalse(t$$ {g}_i\Big(t $$false)$$ \Big) $$ is nonincreasing in +$$ {\mathbb{R}}&#x0005E;{&#x0002B;} $$. Equation () is also studied in the almost periodic case by Ait Dads and Ezzinbi, 5 and by Ait Dads et al, 32 where ffalse(t$$ f\Big(t $$false)$$ \Big) $$ is nondecreasing in …”
Section: Application To Nonlinear Delay Integral Equationsmentioning
confidence: 99%
“…To obtain our results, we use the contraction mapping principle associated with Hilbert's projective metric. Note that in the case when α=0$$ \alpha &#x0003D;0 $$ and g=0$$ g&#x0003D;0 $$, Equation () was considered using Hilbert's projective metric by Ait Dads et al 5 in the pseudo almost periodic case and by Cieutat and Ezzinbi 7 in the pseudo almost automorphic case.…”
Section: Application To Nonlinear Delay Integral Equationsmentioning
confidence: 99%
See 1 more Smart Citation