In this paper, we study a class of nonlinear operator equations x = Ax + x 0 on ordered Banach spaces, where A is a monotone generalized concave operator. Using the properties of cones and monotone iterative technique, we establish the existence and uniqueness of solutions for such equations. In particular, we do not demand the existence of upper-lower solutions and compactness and continuity conditions. As applications, we study first-order initial value problems and two-point boundary value problems with the nonlinear term is required to be monotone in its second argument. In the end, applications to nonlinear systems of equations and to nonlinear matrix equations are also considered.