2022
DOI: 10.1017/nmj.2022.2
|View full text |Cite
|
Sign up to set email alerts
|

Positively Curved Finsler Metrics on Vector Bundles

Abstract: We construct a convex and strongly pseudoconvex Kobayashi positive Finsler metric on a vector bundle E under the assumption that the symmetric power of the dual $S^kE^*$ has a Griffiths negative $L^2$ -metric for some k. The proof relies on the negativity of direct image bundles and the Minkowski inequality for norms. As a corollary, we show that given a strongly pseudoconvex Kobayashi positive Finsler metric, one can upgrade to a convex Finsler metric… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
references
References 36 publications
(78 reference statements)
0
0
0
Order By: Relevance