Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P(x) with chordal sparsity is positive semidefinite for all $$x\in \mathbb {R}^n$$ x ∈ R n if and only if there exists a sum-of-squares (SOS) polynomial $$\sigma (x)$$ σ ( x ) such that $$\sigma P$$ σ P is a sum of sparse SOS matrices. Second, we show that setting $$\sigma (x)=(x_1^2 + \cdots + x_n^2)^\nu $$ σ ( x ) = ( x 1 2 + ⋯ + x n 2 ) ν for some integer $$\nu $$ ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set $$\mathcal {K}=\{x:g_1(x)\ge 0,\ldots ,g_m(x)\ge 0\}$$ K = { x : g 1 ( x ) ≥ 0 , … , g m ( x ) ≥ 0 } satisfying the Archimedean condition, then $$P(x) = S_0(x) + g_1(x)S_1(x) + \cdots + g_m(x)S_m(x)$$ P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + ⋯ + g m ( x ) S m ( x ) for matrices $$S_i(x)$$ S i ( x ) that are sums of sparse SOS matrices. Finally, if $$\mathcal {K}$$ K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for $$(x_1^2 + \cdots + x_n^2)^\nu P(x)$$ ( x 1 2 + ⋯ + x n 2 ) ν P ( x ) with some integer $$\nu \ge 0$$ ν ≥ 0 when P and $$g_1,\ldots ,g_m$$ g 1 , … , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.
We prove decomposition theorems for sparse positive (semi)definite polynomial matrices that can be viewed as sparsity-exploiting versions of the Hilbert–Artin, Reznick, Putinar, and Putinar–Vasilescu Positivstellensätze. First, we establish that a polynomial matrix P(x) with chordal sparsity is positive semidefinite for all $$x\in \mathbb {R}^n$$ x ∈ R n if and only if there exists a sum-of-squares (SOS) polynomial $$\sigma (x)$$ σ ( x ) such that $$\sigma P$$ σ P is a sum of sparse SOS matrices. Second, we show that setting $$\sigma (x)=(x_1^2 + \cdots + x_n^2)^\nu $$ σ ( x ) = ( x 1 2 + ⋯ + x n 2 ) ν for some integer $$\nu $$ ν suffices if P is homogeneous and positive definite globally. Third, we prove that if P is positive definite on a compact semialgebraic set $$\mathcal {K}=\{x:g_1(x)\ge 0,\ldots ,g_m(x)\ge 0\}$$ K = { x : g 1 ( x ) ≥ 0 , … , g m ( x ) ≥ 0 } satisfying the Archimedean condition, then $$P(x) = S_0(x) + g_1(x)S_1(x) + \cdots + g_m(x)S_m(x)$$ P ( x ) = S 0 ( x ) + g 1 ( x ) S 1 ( x ) + ⋯ + g m ( x ) S m ( x ) for matrices $$S_i(x)$$ S i ( x ) that are sums of sparse SOS matrices. Finally, if $$\mathcal {K}$$ K is not compact or does not satisfy the Archimedean condition, we obtain a similar decomposition for $$(x_1^2 + \cdots + x_n^2)^\nu P(x)$$ ( x 1 2 + ⋯ + x n 2 ) ν P ( x ) with some integer $$\nu \ge 0$$ ν ≥ 0 when P and $$g_1,\ldots ,g_m$$ g 1 , … , g m are homogeneous of even degree. Using these results, we find sparse SOS representation theorems for polynomials that are quadratic and correlatively sparse in a subset of variables, and we construct new convergent hierarchies of sparsity-exploiting SOS reformulations for convex optimization problems with large and sparse polynomial matrix inequalities. Numerical examples demonstrate that these hierarchies can have a significantly lower computational complexity than traditional ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.