Tetra functional epoxy resin namely tetraglycidyl 1,4’-bis (4-amine-phenoxy) sulphone benzene epoxy (TGBAPSB) was developed via 1,4’-bis (4-amine-phenoxy) sulphone benzene (BAPSB) and epichlorohydrin. TGBAPSB was reinforced with polyhedral oligomeric silsesquioxane (POSS) nanomaterial in various weight percentages (1–2 wt%) and polyamidoimidazoline (Aradur 140) was used as curing agent. FT-IR results validated the molecular structure of the synthesized POSS. Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) evaluated the thermo-mechanical and thermal behaviour of TGBAPSB epoxy matrix and its organic-inorganic hybrid epoxy nanocomposites (TGBAPSB/POSS). X-Ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) investigated the surface morphological behaviour of the organic-inorganic hybrid epoxy nanocomposites. TGBAPSB epoxy resin with optimized POSS reinforcement exhibited excellent thermo-mechanical, thermal, mechanical, dielectric, and water absorption properties, making it a suitable material for advanced high-performance applications.