Deep Brain Stimulation (DBS) is a surgical intervention that is known to reduce or eliminate the symptoms of common movement disorders, such as Parkinson's disease, dystonia, or tremor. During the intervention the surgeon places electrodes inside of the patient's brain to stimulate specific regions. Since these regions span only a couple of millimeters, and electrode misplacement has severe consequences, reliable and accurate navigation is of great importance. Usually the surgeon relies on fused CT and MRI data sets, as well as direct feedback from the patient. More recently Microelectrode Recordings (MER), which support navigation by measuring the electric field of the patient's brain, are also used. We propose a visualization system that fuses the different modalities: imaging data, MER and patient checks, as well as the related uncertainties, in an intuitive way to present placement-related information in a consistent view with the goal of supporting the surgeon in the final placement of the stimulating electrode. We will describe the design considerations for our system, the technical realization, present the outcome of the proposed system, and provide an evaluation.