Hyperuricemic nephropathy is a metabolic disease in which renal uric acid deposition and excretion are impaired due to elevated levels of uric acid in the blood, leading to impaired renal tubule function and chronic renal disease. Hyperuricemic nephropathy is one of the important complications of hyperuricemia, which seriously affects the quality of life and prognosis of patients. The pathogenesis of hyperuricemic nephropathy involves a variety of factors, including: amino acid metabolism disorder, energy metabolism abnormality, increased nucleotide metabolism, lipid metabolism disorder and bile acid metabolism imbalance, REDOX process disorder, cell cycle and apoptosis imbalance, signal transduction and inflammatory response enhancement, and intestinal flora imbalance. In recent years, omics techniques such as metabolomics, transcriptomics and intestinal microecology have been used to reveal the metabolic, gene and microflora characteristics of hyperuricemic nephropathy from different levels, as well as their interactions and regulatory mechanisms. This paper reviews these studies, analyzes the existing problems and challenges, and puts forward future research directions and suggestions, aiming at providing new theoretical basis and practical guidance for the prevention and treatment of hyperuricemic nephropathy.