The paper presents the first experimental observation of an atypical phenomena during self-organization of dust particles into a one-dimensional chain structure levitated vertically in the plasma of a DC glow discharge. Using a laser, the third (middle) dust particle was removed from the chain of five particles so that the positions of the remaining particles did not significantly change, and a vacancy occurred in the place of the removed particle. This state of the chain turned out to be very stable, which is confirmed by the observation of the subsequent exchange of places of the fourth and the fifth particles of the chain upon the action of the laser on the forth particle. After the exchange process, vertical positions of all particles (first, second, fourth and fifth) in the chain remained almost the same as before the exchange, and the vacancy at the position of the third particle was preserved. The experimental data and the video record of the observed phenomena as well as the estimates of the plasma parameters are presented. An assumption has been made about the mechanism of the discovered phenomena that at present discharge conditions both the vacancy formation and the dust particles positions exchange are possible due to a strong ion wakes which are formed behind the upstream dust particles of the chain.