2015
DOI: 10.1111/maps.12458
|View full text |Cite
|
Sign up to set email alerts
|

Possible melting produced chondrule destruction in NWA 6604 CK4 chondrite

Abstract: In analyzing a thin section of the NWA 6604 CK4 meteorite, only altered chondrules and various components that are probably left behind the destruction of former chondrules can be observed. We suggest that melting, grain size decrease, resorption of the original chondrules, and crystallization of opaque minerals were the main processes that destroyed the chondrules. Four different events could be identified as having occurred during this alteration. First, opaques crystallized along former fractures producing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 35 publications
0
1
0
Order By: Relevance
“…The primitive (unaltered) chondrites contain complex mixtures of micrometer sized magnesian olivine and low-Ca pyroxene, amorphous ferromagnesian silicates, Fe, Ni-metals, sulphides and organic phases. These meteorites also contain fractions of material that was probably vaporized and recondensed during high-temperature transient heating events associated with the formation of chondrules and refractory inclusions (Kereszturi et al, 2015;Bizzaro et al, 2017). The differentiated meteorites, on the other hand, are fragments of asteroids that experienced chemical and physical changes that led to a separation of the metallic part from silicates leading to metallic core and silicate mantle.…”
Section: Introductionmentioning
confidence: 99%
“…The primitive (unaltered) chondrites contain complex mixtures of micrometer sized magnesian olivine and low-Ca pyroxene, amorphous ferromagnesian silicates, Fe, Ni-metals, sulphides and organic phases. These meteorites also contain fractions of material that was probably vaporized and recondensed during high-temperature transient heating events associated with the formation of chondrules and refractory inclusions (Kereszturi et al, 2015;Bizzaro et al, 2017). The differentiated meteorites, on the other hand, are fragments of asteroids that experienced chemical and physical changes that led to a separation of the metallic part from silicates leading to metallic core and silicate mantle.…”
Section: Introductionmentioning
confidence: 99%