Protists that live under low-oxygen conditions often lack conventional mitochondria and instead possess mitochondrion-related organelles (MROs) with distinct biochemical functions. Studies of mostly parasitic organisms have suggested that these organelles could be classified into two general types: hydrogenosomes and mitosomes. Hydrogenosomes, found in parabasalids, anaerobic chytrid fungi, and ciliates, metabolize pyruvate anaerobically to generate ATP, acetate, CO 2 , and hydrogen gas, employing enzymes not typically associated with mitochondria. Mitosomes that have been studied have no apparent role in energy metabolism. Recent investigations of free-living anaerobic protists have revealed a diversity of MROs with a wider array of metabolic properties that defy a simple functional classification. Here we describe an expressed sequence tag (EST) survey and ultrastructural investigation of the anaerobic heteroloboseid amoeba Sawyeria marylandensis aimed at understanding the properties of its MROs. This organism expresses typical anaerobic energy metabolic enzymes, such as pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenase, and associated hydrogenase maturases with apparent organelle-targeting peptides, indicating that its MRO likely functions as a hydrogenosome. We also identified 38 genes encoding canonical mitochondrial proteins in S. marylandensis, many of which possess putative targeting peptides and are phylogenetically related to putative mitochondrial proteins of its heteroloboseid relative Naegleria gruberi. Several of these proteins, such as a branched-chain alpha keto acid dehydrogenase, likely function in pathways that have not been previously associated with the well-studied hydrogenosomes of parabasalids. Finally, morphological reconstructions based on transmission electron microscopy indicate that the S. marylandensis MROs form novel cup-like structures within the cells. Overall, these data suggest that Sawyeria marylandensis possesses a hydrogenosome of mitochondrial origin with a novel combination of biochemical and structural properties.It is now widely accepted that the most recent common ancestor of extant eukaryotes possessed an endosymbiont-derived mitochondrial organelle of alphaproteobacterial ancestry (see reference 16 for a recent review). Although most wellknown eukaryotes contain mitochondria that aerobically respire to produce ATP, a vast diversity of anaerobic eukaryotic lineages have been discovered that lack classical mitochondrial structures. Instead of mitochondria, biochemically diverse double-membrane-bounded organelles have been found that function under low-oxygen conditions (for recent reviews, see references 5, 6, 17, 23, 54, and 57). The discovery and recent investigations of the functions of these mitochondrion-related organelles (MROs) has greatly expanded our understanding of both the conservation and diversity of functions that these organelles can perform.A number of protist lineages, including the parabasalids, several anaerobic ciliate groups, and anaerobic chy...