β-adrenoceptor antagonists are commonly used in ischaemic heart disease (IHD) patients, yet may impair signalling and efficacy of ‘cardioprotective’ interventions. We assessed effects of chronic β1-adrenoceptor antagonism on myocardial resistance to ischemia-reperfusion (IR) injury and the ability of cardioprotective interventions [classic ischaemic preconditioning (IPC); novel sustained ligand-activated preconditioning (SLP)] to reduce IR injury in murine hearts.
Young male C57Bl/6 mice were untreated or received atenolol (0.5 g/l in drinking water) for 4 weeks. Subsequently two cardioprotective stimuli were evaluated: morphine pellets implanted (to induce SLP, controls received placebo) 5 days prior to Langendorff heart perfusion, and IPC in perfused hearts (3 × 1.5 min ischemia/2 min reperfusion).
Atenolol significantly reduced in vivo heart rate. Untreated control hearts exhibited substantial left ventricular dysfunction (~50% pressure development recovery, ~20 mmHg diastolic pressure rise) with significant release of lactate dehydrogenase (LDH, tissue injury indicator) after 25 min ischemia/45 min reperfusion. Contractile dysfunction and elevated LDH were reduced >50% with IPC and SLP. While atenolol treatment did not modify baseline contractile function, post-ischaemic function was significantly depressed compared to untreated hearts. Atenolol pre-treatment abolished beneficial effects of IPC, whereas SLP protection was preserved.
These data indicate that chronic β1-adrenoceptor blockade can exert negative effects on functional IR tolerance and negate conventional IPC (implicating β1-adrenoceptors in IR injury and IPC signalling). However, novel morphine-induced SLP is resistant to inhibition by β1-adrenoceptor antagonism.