Equine malignant hyperthermia MH has been suspected but never genetically confirmed. In this study, we investigated whether mutations in a candidate gene, RyR1, were associated with MH in two clinically affected horses. RyR1 gene sequences revealed polymorphisms in exons 15, 17, and 46 in WTRyR1 and MHRyR1 horses with one derived amino acid change in MHRyR1 exon 46, R2454G. The MHRyR1 horses were genetically heterozygous for this mutation, but presented an MH phenotype with halothane challenge. Skeletal sarcoplasmic reticulum from a R2454G heterozygote collected during a fulminant MH episode showed significantly higher affinity and density of [3H]ryanodine-binding sites compared to WTRyR1, but no differences in Ca2+, Mg2+, and caffeine modulation. In conclusion, an autosomal missense mutation in RyR1 is associated with MH in the horse, providing a screening test for susceptible individuals. [3H]ryanodine-binding analysis suggests that long-lasting changes in RyR1 conformation persists in vitro after the triggering event.