HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Uncertainty quantification for nonlinear reduced-order elasto-dynamics computational modelsEvangéline Capiez-Lernout, Christian Soize, M Mbaye
To cite this version:Evangéline Capiez-Lernout, Christian Soize, M Mbaye. Uncertainty quantification for nonlinear reduced-order elasto-dynamics computational models.
ABSTRACTThe present work presents an improvement of a computational methodology for the uncertainty quantification of structures in presence of geometric nonlinearities. The implementation of random uncertainties is carried out through the nonparametric probabilistic framework from a nonlinear reduced-order model. With such usual modeling, it is difficult to analyze the influence of uncertainties on the nonlinear part of the operators with respect to its linear counterpart. In order to adress this problem, an approach is proposed to take into account uncertainties for both the linear and the nonlinear operators. The methodology is then validated in the context of the linear and nonlinear mistuning of an industrial integrated bladed-disk.