The probability of extreme events such as an earthquake, fire or blast occurring during the lifetime of a structure is relatively low but these events can cause serious damage to the structure as well as to human life. Due to the significant consequences for occupant and structural safety, an accurate analysis of the response of structures exposed to these events is required for their design. Some extreme events may occur as a consequence of another hazard, for example, a fire may occur due to the failure of the electrical system of a structure following an earthquake. In such circumstances, the structure is subjected to a multi-hazard loading scenario. A post-earthquake fire (PEF) is one of the major multi-hazard events that is reasonably likely to occur but has been the subject of relatively little research in the available literature. In most international design codes, structures exposed to multi-hazards scenarios such as earthquakes, which are then followed by fires are only analysed and designed for as separate events, even though structures subjected to an earthquake may experience partial damage resulting in a more severe response to a subsequent fire. Most available analysis procedures and design codes do not address the association of the two hazards. Thus, the design of structures based on existing standards may contribute to a significant risk of structural failure. Indeed, a suitable method of analysis is required to investigate the behaviour of structures when exposed to sequential hazards. In this paper, a multi-hazard analysis approach is developed, which considers the damage caused to structures during and after an earthquake through a subsequent thermal analysis. A methodology is developed and employed to study the nonlinear behaviour of a steel framed structure under post-earthquake fire conditions. A three-dimensional nonlinear finite element model of an unprotected steel frame is developed and outlined.