Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Quantum information applications emerged decades ago, initially introducing a parallel development that mimicked the approach and development of classical computer science. However, in the current decade, novel computer-science concepts were rapidly extended to the fields of quantum processing, computation, and communication. Thus, areas such as artificial intelligence, machine learning, and neural networks have their quantum versions; furthermore, the quantum brain properties of learning, analyzing, and gaining knowledge are discussed. Quantum properties of matter conglomerates have been superficially explored in such terrain; however, the settlement of organized quantum systems able to perform processing can open a new pathway in the aforementioned domains. In fact, quantum processing involves certain requisites as the settlement of copies of input information to perform differentiated processing developed far away or in situ to diversify the information stored there. Both tasks at the end provide a database of outcomes with which to perform either information matching or final global processing with at least a subset of those outcomes. When the number of processing operations and input information copies is large, parallel processing (a natural feature in quantum computation due to the superposition) becomes the most convenient approach to accelerate the database settlement of outcomes, thus affording a time advantage. In the current study, we explored certain quantum features to realize a speed-up model for the entire task of processing based on a common information input to be processed, diversified, and finally summarized to gain knowledge, either in pattern matching or global information availability. By using superposition and non-local properties, the most valuable features of quantum systems, we realized parallel local processing to set a large database of outcomes and subsequently used post-selection to perform an ending global processing or a matching of information incoming from outside. We finally analyzed the details of the entire procedure, including its affordability and performance. The quantum circuit implementation, along with tentative applications, were also discussed. Such a model could be operated between large processing technological systems using communication procedures and also on a moderately controlled quantum matter conglomerate. Certain interesting technical aspects involving the non-local control of processing via entanglement were also analyzed in detail as an associated but notable premise.
Quantum information applications emerged decades ago, initially introducing a parallel development that mimicked the approach and development of classical computer science. However, in the current decade, novel computer-science concepts were rapidly extended to the fields of quantum processing, computation, and communication. Thus, areas such as artificial intelligence, machine learning, and neural networks have their quantum versions; furthermore, the quantum brain properties of learning, analyzing, and gaining knowledge are discussed. Quantum properties of matter conglomerates have been superficially explored in such terrain; however, the settlement of organized quantum systems able to perform processing can open a new pathway in the aforementioned domains. In fact, quantum processing involves certain requisites as the settlement of copies of input information to perform differentiated processing developed far away or in situ to diversify the information stored there. Both tasks at the end provide a database of outcomes with which to perform either information matching or final global processing with at least a subset of those outcomes. When the number of processing operations and input information copies is large, parallel processing (a natural feature in quantum computation due to the superposition) becomes the most convenient approach to accelerate the database settlement of outcomes, thus affording a time advantage. In the current study, we explored certain quantum features to realize a speed-up model for the entire task of processing based on a common information input to be processed, diversified, and finally summarized to gain knowledge, either in pattern matching or global information availability. By using superposition and non-local properties, the most valuable features of quantum systems, we realized parallel local processing to set a large database of outcomes and subsequently used post-selection to perform an ending global processing or a matching of information incoming from outside. We finally analyzed the details of the entire procedure, including its affordability and performance. The quantum circuit implementation, along with tentative applications, were also discussed. Such a model could be operated between large processing technological systems using communication procedures and also on a moderately controlled quantum matter conglomerate. Certain interesting technical aspects involving the non-local control of processing via entanglement were also analyzed in detail as an associated but notable premise.
Fenna-Mathews-Olson complexes participate in the photosynthetic process of Sulfur Green Bacteria. These biological subsystems exhibit quantum features which possibly are responsible for their high efficiency; the latter may comprise multipartite entanglement and the apparent tunnelling of the initial quantum state. At first, to study these aspects, a multidisciplinary approach including experimental biology, spectroscopy, physics, and math modelling is required. Then, a global computer modelling analysis is achieved in the computational biology domain. The current work implements the Hierarchical Equations of Motion to numerically solve the open quantum system problem regarding this complex. The time-evolved states obtained with this method are then analysed under several measures of entanglement, some of them already proposed in the literature. However, for the first time, the maximum overlap with respect to the closest separable state is employed. This authentic multipartite entanglement measure provides information on the correlations, not only based on the system bipartitions as in the usual analysis. Our study has led us to note a different view of FMO multipartite entanglement as tiny contributions to the global entanglement suggested by other more basic measurements. Additionally, in another related trend, the initial state, considered as a Förster Resonance Energy Transfer, is tracked using a novel approach, considering how it could be followed under the fidelity measure on all possible permutations of the FMO subsystems through its dynamical evolution by observing the tunnelling in the most probable locations. Both analyses demanded significant computational work, making for a clear example of the complexity required in computational biology.
Quantum cryptography is a well-stated field within quantum applications where quantum information is used to set secure communications, authentication, and secret keys. Now used in quantum devices with those purposes, particularly Quantum Key Distribution (QKD), which proposes a secret key between two parties free of effective eavesdropping, at least at a higher level than classical cryptography. The best-known quantum protocol to securely share a secret key is the BB84 one. Other protocols have been proposed as adaptations of it. Most of them are based on the quantum indeterminacy for non-orthogonal quantum states. Their security is commonly based on the large length of the key. In the current work, a BB84-like procedure for QKD based on double quantum teleportation allows the sharing of the key statement using several parties. Thus, the quantum bits of information are assembled among three parties via entanglement, instead of travelling through a unique quantum channel as in the traditional protocol. Asymmetry in the double teleportation plus post-measurement retains the secrecy in the process. Despite requiring more complex control and resources, the procedure dramatically reduces the probability of success for an eavesdropper under individual attacks, because of the ignorance of the processing times in the procedure. Quantum Bit Error Rate remains in the acceptable threshold and it becomes configurable. The article depicts the double quantum teleportation procedure, the associated control to introduce the QKD scheme, the analysis of individual attacks performed by an eavesdropper, and a brief comparison with other protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.