2020
DOI: 10.1177/0954410020944085
|View full text |Cite
|
Sign up to set email alerts
|

Post-stall flight dynamics of commercial transport aircraft configuration: A nonlinear bifurcation analysis and validation

Abstract: Loss-of-control has become the largest fatal accident category for worldwide commercial jet accidents, and any initiative aimed at preventing such events requires an understanding of the fundamental aircraft behavior, especially the flight dynamics at post-stall region at which loss-of-control usually occurred. A series of low-speed static and dynamic wind tunnel tests of the Common Research Model over a large angle of attack/sideslip envelope was conducted and a non-linear aerodynamic model was developed. The… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 19 publications
0
1
0
Order By: Relevance
“…Zhao et al [2] of the China Aerodynamics Research and Development Center used a hanger model support system in a transonic wind tunnel with the length of 2.4 m to realize model pitch and roll free motion as well as yaw-driven control motion, and examined the aerodynamic/motion coupling mechanism; Hao studied the criterion and simulation method similar to WTB-VFT [14]; Guo et al [15] used a contacted ball hinge support mechanism with three degrees of freedom, a support mechanism with three degrees of freedom that includes a universal hinge of two degrees of freedom, and a rotating curved rod to study the dynamics [16,17]; Cen et al [18][19][20] also conducted research on technologies related to model free-flight tests and VFT. Additionally, the Nanjing University of Aeronautics and Astronautics [21,22], AVIC Aerodynamics Research Institute [23], and China Academy of Aerospace Aerodynamics [23] have conducted related research.…”
Section: Introductionmentioning
confidence: 99%
“…Zhao et al [2] of the China Aerodynamics Research and Development Center used a hanger model support system in a transonic wind tunnel with the length of 2.4 m to realize model pitch and roll free motion as well as yaw-driven control motion, and examined the aerodynamic/motion coupling mechanism; Hao studied the criterion and simulation method similar to WTB-VFT [14]; Guo et al [15] used a contacted ball hinge support mechanism with three degrees of freedom, a support mechanism with three degrees of freedom that includes a universal hinge of two degrees of freedom, and a rotating curved rod to study the dynamics [16,17]; Cen et al [18][19][20] also conducted research on technologies related to model free-flight tests and VFT. Additionally, the Nanjing University of Aeronautics and Astronautics [21,22], AVIC Aerodynamics Research Institute [23], and China Academy of Aerospace Aerodynamics [23] have conducted related research.…”
Section: Introductionmentioning
confidence: 99%