Doogh is a fermented beverage made from yoghurt with water and salt. Similarly, drinks based on yoghurt are available in different countries with varying degrees of dilution, fat content, rheological properties, and taste. In this project, the use of mathematical calculations in describing rheological parameters from traditional low‐fat Doogh enriched with Caspian Sea (Huso huso) gelatin (0.4 w/v %), xanthan hydrocolloids (0.4 w/v %), and their mixture at a ratio of 0.2:0.2 w/v % studied. Also, serum isolation, pH, and sensory evaluation of samples were investigated. Also, the relationship between apparent viscosity and temperature of Doogh samples using the Arrhenius equation was studied. The sensory evaluation revealed that the overall acceptance scores of the samples containing gelatin, xanthan, mix, and control were 4.31, 4.33, 4.58, and 4.12, respectively. The study on serum separation value showed control sample (45.07) and mix sample (0.84) at the end of 30 days. On the first day, the pH of the Doogh samples decreased with the addition of hydrocolloids, and this trend was time dependent. pH reduction was higher in Doogh with gelatin than in other samples. Mathematical calculations showed that the low‐fat Doogh is a non‐Newtonian type and shear‐thinning (Pseudoplastic) fluid. The activation energy was calculated between 11.65 and 19.15 kJ/mol. According to the obtained results, it concluded that the use of two hydrocolloid compounds improved the physicochemical and sensory characteristics of the low‐fat Doogh samples. Also, the Ostwald‐de Waele mathematical model had a high correlation with the rheological behavior of the samples.