Background: Elevated levels of circulating microparticles (MPs) and molecules of the complement system have been reported in patients with systemic lupus erythematosus (SLE). Moreover, microparticles isolated from patients with SLE (SLE-MPs) contain higher levels of damage-associated molecular patterns (DAMPs) than MPs from healthy controls (CMPs). We hypothesize that the uptake of MPs by monocytes could contribute to the chronic inflammatory processes observed in patients with SLE. Therefore, the aim of this study was to evaluate the expression of activation markers, production of proinflammatory mediators, and activation of the NF-κB signaling pathway in monocytes treated with CMPs and SLE-MPs. Methodology: Monocytes isolated from healthy individuals were pretreated or not with pyrrolidine dithiocarbamate (PDTC) and cultured with CMPs and SLE-MPs. The cell surface expression of CD69 and HLA-DR were evaluated by flow cytometry; cytokine and eicosanoid levels were quantified in culture supernatants by Cytokine Bead Array and ELISA, respectively; and the NF-κB activation was evaluated by Western blot and epifluorescence microscopy. Results: The cell surface expression of HLA-DR and CD69, and the supernatant levels of IL-6, IL-1β, PGE2, and LTB4 were higher in cultures of monocytes treated with SLE-MPs than CMPs. These responses were blocked in the presence of PDTC, a pharmacological inhibitor of the NF-κB pathway, with concomitant reduction of IκBα and cytoplasmic p65, and increased nuclear translocation of p65. Conclusions: The present findings indicate that significant uptake of SLE-MPs by monocytes results in activation, production of inflammatory mediators, and triggering of the NF-κB signaling pathway.