Studies were conducted in 2010 and 2011 to determine the effect of herbicide-based Palmer amaranth management systems in ‘Covington' sweetpotato. Treatments consisted of three herbicide application times. Pretransplant applications were flumioxazin at 107 g ai ha−1, fomesafen at 280 g ai ha−1, flumioxazin at 70 g ha−1plus pyroxasulfone at 89 g ai ha−1, or no herbicide. A second herbicide application was applied within 1 d after transplanting (DAP) and consisted ofS-metolachlor at 800 g ai ha−1, clomazone at 630 g ai ha−1, or no herbicide. Two weeks after planting (WAP) plots receivedS-metolachlor at 800 g ha−1, metribuzin at 140 g ai ha−1, a tank mix ofS-metolachlor at 800 g ha−1plus metribuzin at 140 g ha−1, hand-weeding followed by (fb)S-metolachlor at 800 g ha−1, or no herbicide. Crop tolerance, Palmer amaranth control, and sweetpotato yield in systems containing fomesafen pretransplant were similar to flumioxazin-containing systems. Systems containing flumioxazin plus pyroxasulfone pretransplant resulted in increased crop stunting and decreased sweetpotato yield in 2010, compared with systems containing flumioxazin or fomesafen, but were similar to systems with flumioxazin or fomesafen in 2011. In 2010, systems containingS-metolachlor applied within 1 DAP resulted in increased sweetpotato injury, similar Palmer amaranth control, and reduced no. 1, jumbo, and total sweetpotato yield, compared with systems with clomazone. In 2011, systems containing clomazone were more injurious to sweetpotato than systems receivingS-metolachlor, but Palmer amaranth control and sweetpotato yield were similar. Systems containing metribuzin 2 WAP resulted in increased sweetpotato injury and Palmer amaranth control (in 2010) but similar no. 1 and total sweetpotato yields, compared with systems containingS-metolachlor at 2 WAP. Hand-weeding fbS-metolachlor provided greater Palmer amaranth control and no. 1 sweetpotato yield than did systems ofS-metolachlor without a preceding hand-weeding event in 2010.