Objective: Posterior rectus canal assumed immense importance with newer laparoscopic technique of total extra-peritoneal pre-peritoneal (TEPP/ TEP) hernioplasty for inguinal hernia. However, scientific study of live surgical anatomy of posterior rectus canal is almost totally lacking in the English literature, and hence the present study was conducted. Material and Methods: 3-midline-port technique through posterior rectus sheath approach; Initial telescopic dissection under direct CO 2 insufflation followed by instrument dissection. Results: 68 TEPP hernioplasties were successful in 60 patients with mean age of 50.1 ± 17.2 years (range 18-80) and mean BMI of 22.6 ± 2.0 kg/m 2 (range 19.5-31.2). Rectusial fascia was a definite anatomical entity, dividing traditional posterior rectus canal into two channels, namely, true retromuscular space and true posterior rectus canal (T-PRC). Rectusial fascia was variable, i.e., thick diaphanous (n= 47), thick membranous (n= 13), thin membranous (n= 3) and thin flimsy (n= 5). Posterior rectus sheath (PRS) was also variable, incomplete (n= 54) and complete (n= 14). Incomplete PRS showed seven variations in both extent and/or morphology. Complete PRS show five morphological variations. Transversalis fascia demonstrated three morphological variations, namely, single diaphanous (n= 41), single membranous (= 10) and thin flimsy (n= 3). TEPP hernioplasty was readily feasible through avascular true posterior rectus canal. Conclusion: Posterior rectus canal is divided by 'rectusial fascia' into two channels, namely, true retromuscular space and true posterior rectus canal, latter being proper avascular plane of dissection for TEPP hernioplasty. Rectusial fascia, posterior rectus sheath and transversalis fascia showed morphological variations. Timely recognition of variable real-time anatomy is recommended to perform adequate proper surgical dissection for seamless TEPP hernioplasty with ease, rapidity and safety.