ABSTRACT. Gene mapping for a Cupressus species is presented for the first time. Two linkage maps for the Mediterranean cypress (Cupressus sempervirens) varieties, C. sempervirens var. horizontalis and C. sempervirens var. pyramidalis, were constructed following the pseudo-testcross mapping strategy and employing RAPD, SCAR and morphological markers. A total of 427 loci (425 RAPDs, two SCARs) representing parents and F 1 progeny were screened for polymorphism with 32 random decamer and two SCAR primers. A morphological marker defined as "crown form" was also included. Of 274 polymorphic loci, the 188 that presented Mendelian inheritance formed the mapping dataset. Of these loci, 30% were mapped into seven linkage groups for the horizontalis (maternal) and four linkage groups for the pyramidalis (paternal) map. The putative "crown form" locus was included in a linkage group of both maps. The horizontalis and the pyramidalis maps covered 160.1 and 144.5 cM, respectively, while genome length was estimated to be 1696 cM for the former variety and 1373 cM for the latter. The four RAPD markers most tightly linked to crown form were cloned and converted to SCARs. Each of the cloned RAPD markers yielded two to three different sequences behaving as co-migrating fragments. Two SCAR markers, SC-D05 432 and SC-D09 667 , produced amplified bands of the expected sizes and maintained linkage with the appropriate phenotype, but to a lesser extent compared to their original RAPD counterparts. These linkage maps represent a first step towards the localization of QTLs and genes controlling crown form and other polygenic traits in cypress.