The aim of this study was to examine oxidative protection and enzymatic browning in the storage of minimally processed cassava and their relationship with population density and harvest age. Population densities were 1.0, 1.25, 1.5, and 1.75 plants m−2. After being harvested at 300, 360, or 420 days after planting, cassava were minimally processed and stored at 5 ± 2°C. It was observed that superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) play key roles in the tolerance of young roots to browning. Planting density, however, does not appear to be a key factor modulating the activity of the enzymes studied.
Practical applications
Younger harvested cassava roots, harvested at 300 days, are more tolerant to enzymatic browning. This appears to be in part due to enzymatic activity modulation of the SOD, CAT, and POD enzymes. In addition, it has been demonstrated that agronomic techniques aimed at increasing productivity, such as increasing the planting density of cassava, do not alter the biomarkers of postharvest quality. In summary, evidence that field management may be an efficient approach to improving the conservation of minimally processed cassava is provided. We believe that the findings of this paper will be of great interest regarding the influence of field management on the postharvest quality of freshly cut cassava and will also provide applicable results relating to its production chain.