Accumulated levels of mutant huntingtin protein (mHTT) and its fragments are considered contributors to the pathogenesis of Huntington’s disease (HD). Although lowering mHTT by stimulating autophagy has been considered a possible therapeutic strategy, the role and competence of autophagy-lysosomal pathway (ALP) during HD progression in the human disease remains largely unknown. Here, we used multiplex confocal and ultrastructural immunocytochemical analyses of ALP functional markers in relation to mHTT aggresome pathology in striatum and the less affected cortex of HD brains staged from HD2 to HD4 by Vonsattel neuropathological criteria compared to controls. Immunolabeling revealed the localization of HTT/mHTT in ALP vesicular compartments labeled by autophagy-related adaptor proteins p62/SQSTM1 and ubiquitin, and cathepsin D (CTSD) as well as HTT-positive inclusions. Although comparatively normal at HD2, neurons at later HD stages exhibited progressive enlargement and clustering of CTSD-immunoreactive autolysosomes/lysosomes and, ultrastructurally, autophagic vacuole/lipofuscin granules accumulated progressively, more prominently in striatum than cortex. These changes were accompanied by rises in levels of HTT/mHTT and p62/SQSTM1, particularly their fragments, in striatum but not in the cortex, and by increases of LAMP1 and LAMP2 RNA and LAMP1 protein. Importantly, no blockage in autophagosome formation and autophagosome-lysosome fusion was detected, thus pinpointing autophagy substrate clearance deficits as a basis for autophagic flux declines. The findings collectively suggest that upregulated lysosomal biogenesis and preserved proteolysis maintain autophagic clearance in early-stage HD, but failure at advanced stages contributes to progressive HTT build-up and potential neurotoxicity. These findings support the prospect that ALP stimulation applied at early disease stages, when clearance machinery is fully competent, may have therapeutic benefits in HD patients.