Although prostaglandin E2 (PGE2) vasodilates the ductus arteriosus, tocolysis with cyclooxygenase (COX) inhibitors delays postnatal ductus arteriosus closure. We used fetal mice and sheep to determine if PGE2 has a role in the development of ductus contractility that is distinct from its function as a vasodilator. Prolonged exposure of fetal ductus to PGE2, in vitro, increased expression of CaL- and K+-channel genes (CaLα1c, CaLβ2, Kir6.1, Kv1.5) (which regulate oxygen-induced constriction) without affecting genes that regulate Rho-kinase-mediated calcium sensitization. Conversely, chronic exposure to cyclooxygenase inhibitors in utero decreased expression of CaL- and K+-channel genes, without affecting Rho-kinase-associated genes. Chronic cyclooxygenase inhibition in utero decreased the ductus’ in vitro contractile response to stimuli that utilize CaL- and K+-channels (like O2 and K+), whereas the response to stimuli that act through Rho-kinase–mediated pathways (like U46619) was not significantly affected. Phosphodiesterase expression, which decreases the ductus’ sensitivity to cAMP/cGMP-dependent vasodilators, was increased by PGE2 exposure and decreased by cyclooxygenase inhibition, respectively. These studies identify potential downstream effectors of a PGE2-mediated, developmental program, regulating oxygen-induced ductus closure. Alterations in these effectors may explain the increased risk of patent ductus arteriosus (PDA) after in utero cyclooxygenase inhibition.