Chemical warfare nerve agents (CWNA) inhibit acetylcholinesterase and are among the most lethal chemicals known to man. Children are predicted to be vulnerable to CWNA exposure because of their smaller body masses, higher ventilation rates and immature central nervous systems. While a handful of studies on the effects of CWNA in younger animals have been published, exposure routes relevant to battlefield or terrorist situations (i.e. inhalation for sarin) were not used. Thus, we estimated the 24 h LC for whole-body (10 and 60 min) exposure to sarin using a stagewise, adaptive dose design. Specifically, male and female Sprague-Dawley rats were exposed to a range of sarin concentrations (6.2-44.0 or 1.6-12.5 mg/m³) for either 10 or 60 min, respectively, at six different times during their development (postnatal day [PND] 7, 14, 21, 28, 42 and 70). For male and female rats, the lowest LC values were observed for PND 14 and the highest LC values for PND 28. Sex differences were observed only for PND 42 for the 10 min exposures and PND 21 and 70 for the 60 min exposures. Thus, younger rats (PND 14) were more susceptible than older rats (PND 70) to the lethal effects of whole-body exposure to sarin, while adolescent (PND 28) rats were the least susceptible and sex differences were minimal. These results underscore the importance of controlling for the age of the animal in research on the toxic effects associated with CWNA exposure.