Wood-boring pests are difficult to monitor due to their concealed lifestyle. To effectively control these wood-boring pests, it is first necessary to efficiently and accurately detect their presence and identify their species, which requires addressing the limitations of traditional monitoring methods. This paper proposes a deep learning-based model called BorerNet, which incorporates an attention mechanism to accurately identify wood-boring pests using the limited vibration signals generated by feeding larvae. Acoustic sensors can be used to collect boring vibration signals from the larvae of the emerald ash borer (EAB), Agrilus planipennis Fairmaire, 1888 (Coleoptera: Buprestidae), and the small carpenter moth (SCM), Streltzoviella insularis Staudinger, 1892 (Lepidoptera: Cossidae). After preprocessing steps such as clipping and segmentation, Mel-frequency cepstral coefficients (MFCCs) are extracted as inputs for the BorerNet model, with noisy signals from real environments used as the test set. BorerNet learns from the input features and outputs identification results. The research findings demonstrate that BorerNet achieves an identification accuracy of 96.67% and exhibits strong robustness and generalization capabilities. Compared to traditional methods, this approach offers significant advantages in terms of automation, recognition efficiency, and cost-effectiveness. It enables the early detection and treatment of pest infestations and allows for the development of targeted control strategies for different pests. This introduces innovative technology into the field of tree health monitoring, enhancing the ability to detect wood-boring pests early and making a substantial contribution to forestry-related research and practical applications.