The class III antiarrhythmic agent 4-chloro-N,N-diethyl-N-heptyl-benzene butanaminium (clofilium) is known as a K+ channel open-channel blocker and has either anti- or proapoptotic property due to undefined mechanisms. Based on the evidence that neuronal viability is largely, sometimes critically, affected by voltage- and ligand-gated Ca2+ channels and the Na+, K+-ATPase, we tested the hypothesis that clofilium might additionally act on Ca2+ permeable ion channels and the Na+, K+-ATPase. Membrane currents associated with activities of voltage-gated Ca2+ channels, N-methyl-D-aspartate (NMDA) receptor channels and Na+, K+-ATPase were recorded using whole-cell recordings in cultured murine cortical neurons. Clofilium (0.1–100 µmol/l) inhibited high voltage-activated Ca2+ currents in concentration- and use-dependent manners. Clofilium acted as a potent antagonist of NMDA receptor channels, preferably blocked the NMDA steady-state current at a low concentration (0.1 µmol/l). At concentrations of >100 µmol/l, clofilium blocked both peak and steady-state NMDA currents in a voltage-independent manner. Clofilium also inhibited the Na+, K+-ATPase current with an IC50 of 7.5 µmol/l. Our data suggest that the pharmacological action of clofilium is far more complex than recognized before; the multiple actions of clofilium on membrane conductance may explain its diverse effects on cellular events and cell viability.