Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Orthopedic diseases are widespread worldwide, impacting the body’s musculoskeletal system, particularly those involving bones or hips. They have the potential to cause discomfort and impair functionality. This paper aims to address the lack of supplementary diagnostics in orthopedics and improve the method of diagnosing orthopedic diseases. The study uses binary breadth-first search (BBFS), binary particle swarm optimization (BPSO), binary grey wolf optimizer (BGWO), and binary whale optimization algorithm (BWAO) for feature selections, and the BBFS makes an average error of 47.29% less than others. Then we apply six machine learning models, i.e., RF, SGD, NBC, DC, QDA, and ET. The dataset used contains 310 instances and six distinct features. Through experimentation, the RF model led to optimal outcomes during comparison to the remaining models, with an accuracy of 91.4%. The parameters of the RF model were optimized using four optimization algorithms: BFS, PSO, WAO, and GWO. To check how well the optimized RF works on the dataset, this paper uses prediction evaluation metrics such as accuracy, sensitivity, specificity, F-score, and the AUC curve. The results showed that the BFS-RF can improve the performance of the original classifier compared with others with 99.41% accuracy.
Orthopedic diseases are widespread worldwide, impacting the body’s musculoskeletal system, particularly those involving bones or hips. They have the potential to cause discomfort and impair functionality. This paper aims to address the lack of supplementary diagnostics in orthopedics and improve the method of diagnosing orthopedic diseases. The study uses binary breadth-first search (BBFS), binary particle swarm optimization (BPSO), binary grey wolf optimizer (BGWO), and binary whale optimization algorithm (BWAO) for feature selections, and the BBFS makes an average error of 47.29% less than others. Then we apply six machine learning models, i.e., RF, SGD, NBC, DC, QDA, and ET. The dataset used contains 310 instances and six distinct features. Through experimentation, the RF model led to optimal outcomes during comparison to the remaining models, with an accuracy of 91.4%. The parameters of the RF model were optimized using four optimization algorithms: BFS, PSO, WAO, and GWO. To check how well the optimized RF works on the dataset, this paper uses prediction evaluation metrics such as accuracy, sensitivity, specificity, F-score, and the AUC curve. The results showed that the BFS-RF can improve the performance of the original classifier compared with others with 99.41% accuracy.
This article introduces the Modified Al-Biruni Earth Radius (MBER) algorithm, which seeks to improve the precision of categorizing eye states as either open (0) or closed (1). The evaluation of the proposed algorithm was assessed using an available EEG dataset that applied preprocessing techniques, including scaling, normalization, and elimination of null values. The MBER algorithm’s binary format is specifically designed to select features that can significantly enhance the accuracy of classification. The proposed algorithm and competing ones, namely, Al-Biruni Earth Radius (BER), Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WAO), Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA) were evaluated using predefined sets of assessment criteria. The statistical analysis employed the ANOVA and Wilcoxon signed-rank tests and assessed the effectiveness and significance of the proposed algorithm compared to the other five algorithms. Furthermore, A series of visual depictions were presented to validate the effectiveness and robustness of the proposed algorithm. Thus, the MBER algorithm outperformed the other optimizers on the majority of the unimodal benchmark functions due to these considerations. Different ML models were used for classification, e.g., DT, RF, KNN, SGD, GNB, SVC, and LR. The KNN model achieved the highest values of Precision (PPV) (0.959425), Negative Predictive Value (NPV) (0.964969), FScore (0.963431), accuracy (0.9612), Sensitivity (0.970578) and Specificity (0.949711). Thus, KNN serves as a fitness function and is optimized by the utilization of Modified Al-Biruni earth radius (MBER). Finally, the accuracy of eye state classification achieved 96.12% using the proposed algorithm. Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-74475-5.
The rapid expansion of artificial intelligence (AI) integrated with the Internet of Things (IoT) has fueled the development of various smart devices, particularly for smart city applications. However, the heterogeneity of these devices necessitates a robust communication network capable of maintaining a consistent traffic flow. This paper employs Machine Learning (ML) models to classify continuously received network parameters from diverse IoT devices, identifying necessary adjustments to enhance network performance. Key network traffic parameters, such as packet data, are transmitted through gateways via specialized tools. Six different ML techniques with default parameters were used: Decision Tree (DT), Random Forest (RF), Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), Naive Bayes (NB), and Stochastic Gradient Descent Classifiers (SGDC), to classify the traffic of the environment (IoT / non IoT). The models' performance was evaluated in a real-time smart laboratory environment comprising 38 IoT devices from various vendors with the following metrics: Accuracy, F1-score, Recall and Precision. The RF model achieved the highest Accuracy of 95.6%. Also the Binary Particle Swarm Optimizer (BPSO) was used across the RF. The results demonstrated that the BPSO-RF with hyperparameter optimization enhanced the Accuracy from 95.6% to 99.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.