Lipid transfer proteins (LTPs) are widely distributed in plants and play an important role in the response to stress. Potato (Solanum tuberosum L.) is sensitive to a lack of water, and drought stress is one of the limiting factors for its yield. Therefore, mining candidate functional genes for drought stress and creating new types of potato germplasm for drought resistance is an effective way to solve this problem. There are few reports on the LTP family in potato. In this study, 39 members of the potato LTP family were identified. They were located on seven chromosomes, and the amino acid sequences encoded ranged from 101 to 345 aa. All 39 family members contained introns and had exons that ranged from one to four. Conserved motif analysis of potato LTP transcription factors showed that 34 transcription factors contained Motif 2 and Motif 4, suggesting that they were conserved motifs of potato LTP.Compared with the LTP genes of homologous crops, the potato and tomato (Solanum lycopersicum L.) LTPs were the mostly closely related. The StLTP1 and StLTP7 genes were screened by quantitative reverse transcription PCR combined with potato transcriptome data to study their expression in tissues and the characteristics of their responses to drought stress. The results showed that StLTP1 and StLTP7 were upregulated in the roots, stems, and leaves after PEG 6000 stress. Taken together, our study provides comprehensive information on the potato LTP family that will help to develop a framework for further functional studies.expression analysis, genome-wide identification, LTP, potato) is one of the most important food crops and economic crops in China, and the amounts of its area and yield rank first in the world. Inner Mongolia is one of the primary bases for the production of potato seed and commercial potatoes in China. The annual rainfall is approximately 200-350 mm, and the region is arid and semiarid (du et al., 2013;Zhang, Li, et al., 2022). Drought stress is Dan Wang and Jian Song contributed equally to this work.