Potato (Solanum tuberosum) production generally requires added nitrogen (N), which is costly and potentially environmentally damaging. One path to limiting N application is breeding N efficient potatoes. Effective use of nitrogen, across crops, is typically characterized in terms of yield. However, tuber quality characteristics affect potato marketability, especially for red fresh market potatoes. While optimal N rates maximize yield, the genotype-specific effect of N on tuber quality traits is unclear. In order to highlight quality traits effected by N, identify germplasm with lower N requirements, and determine optimal N rates for red-skinned clones, we conducted a variable N rate experiment over two years in Minnesota. Eight red fresh market genotypes were grown in RCB factorial design with five nitrogen application rates ranging from 0 to 81.6 kg/ha. Best linear unbiased estimates were calculated for yield, skin color, skin set, and tuber shape. The models for yield and quality traits included significant genotype by N rate interaction effects, suggesting that there is variation in the way clones respond to N. Established varieties were more responsive to added N than breeding lines. Similarly, established varieties tended to produce more oblong tubers under higher N conditions, while the breeding lines remained round. Color traits also responded to N in a genotype-specific way, while the interaction effect for other traits depended on unmeasured environmental factors. No clone exhibited increased yield above the 54.4 kg/ha rate. Our results suggest that the 81.6 kg/ha rate produced less favorable phenotypes for all traits.