Helicoverpa armigera, a global polyphagous pest, attacks a wide variety of crops causing huge agricultural loss. Overuse of conventional insecticides for Helicoverpa control has made Helicoverpa resistant to insecticides leading to more severe attacks on crops diverting interest of researchers to explore alternate control agents. Present study investigates the cidal and antifeedant potential of Emamectin benzoate; a semi-synthetic avermectin derived from the soil actinomycetes, Streptomyces avermitilis; against early IV instars of H. armigera. Larvae were fed on the castor leaf discs (3.5 cm diameter) dipped in different concentrations of Emamectin benzoate; ranging from 0.05 µg/mL-1.5 µg/mL. The leaf disc areas were measured pre-and post-larval feeding to estimate the antifeedant potential of compound. The effect of feeding was also assessed on the survival of larvae by scoring the larval mortality till 96 h. Our investigations showed significant larvicidal potential of Emamectin benzoate against H. armigera revealing respective LC 50 values of 0.26 µg/mL, 0.095 µg/mL, 0.043 µg/mL and 0.027 µg/mL after 24, 48, 72 and 96 h feeding. Furthermore, a remarkable decrease of 93.59% was observed in larval feeding potential indicating significant antifeedant efficacy of Emamectin benzoate. A strong correlation between antifeedant index and the Emamectin benzoate concentration resulted in 1.48-fold index reduction with a decrease in concentration. Our results demonstrated efficacy of Emamectin benzoate as an effectual larvicidal and antifeedant agent against H. armigera. Employing selective insecticide can tackle issues of pest resistance and pest resurgence after ascertaining in the fields as Helicoverpa control agent and negating impact on non-target organisms.