This study is aimed at investigating the potentials of oil palm wastes as an alternative to fossil fuels (coal) for domestic heat generation via briquettes (solid fuels) production. In this study oil palm wastes such as empty fruit bunches (EFB), mesocarp fiber (MF) and palm kernel shell (PKS) were pyrolyzed at temperatures of 400°C for 120 min and a heating rate of 10°C min −1. The biochar and bio-oil obtained were blended in the ratio of 60:40 weight percentages and compressed at a constant pressure of 400 kg cm −2 for charcoal briquettes production. The combustion profiles, heat release of the charcoal briquettes and Malaysian sub-bituminous coal were analyzed and compared through thermogravimetric analysis (TGA). Comparably, MF and PKS charcoal briquettes had higher HHV of 26.15 and 25.99 MJ kg −1 , individually than coal which has 24.21 MJ kg −1 , while EFB charcoal briquette showed the lowest value 23.93 MJ kg −1. Therefore, it can be said that all the charcoal briquettes showed a positive sign to replace coal. The maximum and minimum heat released of 0.059 and 0.048 W were obtained from the combustion of EFB and MF charcoal briquettes. It was established that in each ton of raw (dry basis) of EFB, MF, and PKS, there is 0.177, 0.212 and 0.228 tons of charcoal briquettes which correspond to 1.866, 2.055 and 2.414 MW of heat. Therefore, the findings in this study could contribute toward achieving the targeted 500 MW of green energy initiated in 2005 by the Malaysian government. Furthermore, the production of charcoal briquettes could be one of the proper methods to minimize the agricultural disposal problem in Malaysia.