Cathelicidins (human LL-37 and rat CRAMP) are multifunctional peptides involved in various cardiovascular conditions. This review integrates the recent findings about the functional involvement of LL-37/CRAMP across atherosclerosis, acute coronary syndrome, myocardial infarction, heart failure, diabetic cardiomyopathy, and platelet aggregation/thrombosis. In atherosclerosis, LL-37 interacts with scavenger receptors to modulate lipid metabolism and binds with mitochondrial DNA and lipoproteins. In acute coronary syndrome, LL-37 influences T cell responses and mitigates calcification within atherosclerotic plaques. During myocardial infarction and ischaemia/reperfusion injury, LL-37/CRAMP exhibits dual roles: protecting against myocardial damage through the AKT and ERK1/2 signalling pathways, while exacerbating inflammation via TLR4 and NLRP3 inflammasome activation. In heart failure, LL-37/CRAMP attenuates hypertrophy and fibrosis via NF-κB inhibition and the activation of the IGFR1/PI3K/AKT and TLR9/AMPK pathways. Moreover, in diabetic cardiomyopathy, these peptides alleviate oxidative stress and fibrosis by inhibiting TGFβ/Smad and AMPK/mTOR signalling and provide anti-inflammatory effects by reducing NF-κB nuclear translocation and NLRP3 inflammasome formation. LL-37/CRAMP also modulates platelet aggregation and thrombosis through the FPR2 and GPVI receptors, impacting apoptosis, autophagy, and other critical cellular processes. This comprehensive overview underscores LL-37/CRAMP as a promising therapeutic target in cardiovascular diseases, necessitating further elucidation of its intricate signalling networks and biological effects for clinical translation.