Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens. In this study, we identify biomarkers of bumble bee (Bombus impatiens) responses to key stressors by first subjecting bees to various short‐term stressors (cold, heat, nutrition and pathogen challenge) in a laboratory setting and assessing their transcriptome responses. Using random forest classification on this whole transcriptome data, we were able to discriminate each stressor. Our best model (tissue‐specific model trained on a subset of important genes) correctly predicted known stressors with 92% accuracy. We then applied this random forest model to wild‐caught bumble bees sampled across a heatwave event at two sites in central Pennsylvania, US, expected to differ in baseline temperature and floral resource availability. Transcriptomes of bees sampled during the heat wave's peak showed signatures of heat stress, while bees collected in the relatively cooler morning periods showed signatures of starvation and cold stress. We failed to pick up on signals of heat stress shortly after the heatwave, suggesting this set of biomarkers is more useful for identifying acute stressors than long‐term monitoring of chronic, landscape‐level stressors. We highlight future directions to fine‐tune landscape transcriptomics towards the development of better stress biomarkers that can be used both for conservation and improving understanding of stressor impacts on bees.
Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens. In this study, we identify biomarkers of bumble bee (Bombus impatiens) responses to key stressors by first subjecting bees to various short‐term stressors (cold, heat, nutrition and pathogen challenge) in a laboratory setting and assessing their transcriptome responses. Using random forest classification on this whole transcriptome data, we were able to discriminate each stressor. Our best model (tissue‐specific model trained on a subset of important genes) correctly predicted known stressors with 92% accuracy. We then applied this random forest model to wild‐caught bumble bees sampled across a heatwave event at two sites in central Pennsylvania, US, expected to differ in baseline temperature and floral resource availability. Transcriptomes of bees sampled during the heat wave's peak showed signatures of heat stress, while bees collected in the relatively cooler morning periods showed signatures of starvation and cold stress. We failed to pick up on signals of heat stress shortly after the heatwave, suggesting this set of biomarkers is more useful for identifying acute stressors than long‐term monitoring of chronic, landscape‐level stressors. We highlight future directions to fine‐tune landscape transcriptomics towards the development of better stress biomarkers that can be used both for conservation and improving understanding of stressor impacts on bees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.