The skin is one of the most essential tissues in the human body, interacting with the outside environment and shielding the body from diseases and excessive water loss. Hydrogels, decellularized porcine dermal matrix, and lyophilized polymer scaffolds have all been used in studies of skin wound repair, wound dressing, and skin tissue engineering, however, these materials cannot replicate the nanofibrous architecture of the skin's native extracellular matrix (ECM). Electrospun nanofibers are a fascinating new form of nanomaterials with tremendous potential across a broad spectrum of applications in the biomedical field, including wound dressings, wound healing scaffolds, regenerative medicine, bioengineering of skin tissue, and multifaceted drug delivery. This article reviews recent in vitro and in vivo developments in multifunctional electrospun nanofibers (MENs) for wound healing. This review begins with an introduction to the electrospinning process, its principle, and the processing parameters which have a significant impact on the nanofiber properties. It then discusses the various geometries and advantages of MEN scaffolds produced by different innovative electrospinning techniques for wound healing applications when used in combination with stem cells. This review also discusses some of the possible future nanofiber‐based models that could be used. Finally, we conclude with potential perspectives and conclusions in this area.