Climate change and land use/land cover (LULC) change have received widespread attention as the two main factors contributing to the shrinking of plant habitats. However, the different effects of these factors on understory economic tree species are not clear. This is not conducive to the conservation and exploitation of forest resources. Here, we used species distribution modeling to predict the extent to which climate change and LULC change will affect changes in suitable habitats for A. elata under different scenarios in the future. The results showed the suitable habitat to be located in the Changbai Mountain Range in northeast China. The current area is 110,962 km2. The main variables that affect the suitable habitat are annual precipitation, LULC, slope, and mean diurnal range. The percentage contributions are 31.2%, 16.8%, 12.8%, and 12.3%, respectively. In the 2070s, the area of high-quality (moderately and highly) suitable habitat was reduced by an average of 6.05% when climate alone changed, and by an average of 10.21% when land use alone changed. When both factors changed together, there was an average decrease of 9.69%. When climate change and land use change acted together, the shrinking area of suitable habitat did not suddenly increase. These findings help to identify potentially suitable habitats for A. elata and to carry out conservation and exploitation efforts to ensure sustainability.