We review the dramatic progress in the simulations of compact objects and compact-object binaries that has taken place in the first two decades of the twenty-first century. This includes simulations of the inspirals and violent mergers of binaries containing black holes and neutron stars, as well as simulations of black-hole formation through failed supernovae and high-mass neutron star-neutron star mergers. Modeling such events requires numerical integration of the field equations of general relativity in three spatial dimensions, coupled, in the case of neutron-star containing binaries, with increasingly sophisticated treatment of fluids, electromagnetic fields, and neutrino radiation. However, it was not until 2005 that accurate long-term evolutions of binaries containing black holes were even possible (Pretorius 2005 Phys. Rev. Lett. 95 121101, Campanelli et al 2006 Phys. Rev. Lett. 96 111101, Baker et al 2006 Phys. Rev. Lett. 96 111102). Since then, there has been an explosion of new results and insights into the physics of strongly-gravitating system. Particular emphasis has been placed on understanding the gravitational wave and electromagnetic signatures from these extreme events. And with the recent dramatic discoveries of gravitational waves from merging black holes by the Laser Interferometric Gravitational Wave Observatory and Virgo, and the subsequent discovery of both electromagnetic and gravitational wave signals from a merging neutron star-neutron star binary, numerical relativity became an indispensable tool for the new field of multimessenger astronomy.